Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Med Res ; 28(1): 577, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38071384

RESUMO

BACKGROUND: Cerebral alveolar echinococcosis (CAE) and brain metastases (BM) share similar in locations and imaging appearance. However, they require distinct treatment approaches, with CAE typically treated with chemotherapy and surgery, while BM is managed with radiotherapy and targeted therapy for the primary malignancy. Accurate diagnosis is crucial due to the divergent treatment strategies. PURPOSE: This study aims to evaluate the effectiveness of radiomics and machine learning techniques based on magnetic resonance imaging (MRI) to differentiate between CAE and BM. METHODS: We retrospectively analyzed MRI images of 130 patients (30 CAE and 100 BM) from Xinjiang Medical University First Affiliated Hospital and The First People's Hospital of Kashi Prefecture, between January 2014 and December 2022. The dataset was divided into training (91 cases) and testing (39 cases) sets. Three dimensional tumors were segmented by radiologists from contrast-enhanced T1WI images on open resources software 3D Slicer. Features were extracted on Pyradiomics, further feature reduction was carried out using univariate analysis, correlation analysis, and least absolute shrinkage and selection operator (LASSO). Finally, we built five machine learning models, support vector machine, logistic regression, linear discrimination analysis, k-nearest neighbors classifier, and Gaussian naïve bias and evaluated their performance via several metrics including sensitivity (recall), specificity, positive predictive value (precision), negative predictive value, accuracy and the area under the curve (AUC). RESULTS: The area under curve (AUC) of support vector classifier (SVC), linear discrimination analysis (LDA), k-nearest neighbors (KNN), and gaussian naïve bias (NB) algorithms in training (testing) sets are 0.99 (0.94), 1.00 (0.87), 0.98 (0.92), 0.97 (0.97), and 0.98 (0.93), respectively. Nested cross-validation demonstrated the robustness and generalizability of the models. Additionally, the calibration plot and decision curve analysis demonstrated the practical usefulness of these models in clinical practice, with lower bias toward different subgroups during decision-making. CONCLUSION: The combination of radiomics and machine learning approach based on contrast enhanced T1WI images could well distinguish CAE and BM. This approach holds promise in assisting doctors with accurate diagnosis and clinical decision-making.


Assuntos
Neoplasias Encefálicas , Equinococose , Humanos , Estudos Retrospectivos , Equinococose/diagnóstico por imagem , Neoplasias Encefálicas/diagnóstico por imagem
2.
Eur J Radiol ; 169: 111180, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37949023

RESUMO

BACKGROUND: To predict tuberculosis (TB) treatment outcomes at an early stage, prevent poor outcomes ofdrug-resistant tuberculosis(DR-TB) and interrupt transmission. METHODS: An internal cohort for model development consists of 204 bacteriologically-confirmed TB patients who completed anti-tuberculosis treatment, with one pretreatment and two follow-up CT images (612 scans). Three radiomics feature-based models (RM) with multiple classifiers of Bagging, Random forest and Gradient boosting and two deep-learning-based models (i.e., supervised deep-learning model, SDLM; weakly supervised deep-learning model, WSDLM) are developed independently. Prediction scores of RM and deep-learning models with respectively highest performance are fused to create new fusion models under different fusion strategies. An additional independent validation was conducted on the external cohort comprising 80 patients (160 scans). RESULTS: For RM scheme, 16 optimal radiomics features are finally selected using longitudinal scans. The AUCs of RM for Bagging, Random forest and Gradient boosting were 0.789, 0.773 and 0.764 in the internal cohort and 0.840, 0.834 and 0.816 in the external cohort, respectively. For deep learning-based scheme, AUCs of SDLM and WSDLM were 0.767 and 0.661 in the internal cohort, and 0.823 and 0.651 in the external. The fusion model yields AUCs from 0.767 to 0.802 in the internal cohort, and from 0.831 to 0.857 in the external cohort. CONCLUSIONS: Fusion of radiomics features and deep-learning model may have the potential to predict early failure outcome of DR-TB, which may be combined to help prevent poor TB treatment outcomes.


Assuntos
Aprendizado Profundo , Tuberculose , Humanos , Área Sob a Curva , Tomografia Computadorizada por Raios X , Resultado do Tratamento , Tuberculose/diagnóstico por imagem , Tuberculose/tratamento farmacológico , Estudos Retrospectivos
3.
iScience ; 26(11): 108326, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37965132

RESUMO

Three deep learning (DL)-based prediction models (PMs) using longitudinal CT images were developed to predict tuberculosis (TB) treatment outcomes. The internal dataset consists of 493 bacteriologically confirmed TB patients who completed the anti-tuberculosis treatment with three-time CT scans, including a pretreatment CT scan and two follow-up CT scans. PM1 was trained using only pretreatment CT scans, and PM2 and PM3 were developed by adding follow-up scans. An independent testing was performed on external dataset comprising 86 TB patients. The area under the curve for classifying success and drug-resistant (DR)-TB was improved on both internal (0.609 vs. 0.625 vs. 0.815) and external (0.627 vs. 0.705 vs. 0.735) dataset by adding follow-up scans. The accuracy and F1-score also showed an increasing tendency in the external test. Regular follow-up CT scans can aid in the treatment prediction, and special attention should be given to early intensive phase of treatment to identify high-risk DR-TB patients.

4.
Front Physiol ; 13: 977427, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505076

RESUMO

Background: Accurate localization and classification of intracerebral hemorrhage (ICH) lesions are of great significance for the treatment and prognosis of patients with ICH. The purpose of this study is to develop a symmetric prior knowledge based deep learning model to segment ICH lesions in computed tomography (CT). Methods: A novel symmetric Transformer network (Sym-TransNet) is designed to segment ICH lesions in CT images. A cohort of 1,157 patients diagnosed with ICH is established to train (n = 857), validate (n = 100), and test (n = 200) the Sym-TransNet. A healthy cohort of 200 subjects is added, establishing a test set with balanced positive and negative cases (n = 400), to further evaluate the accuracy, sensitivity, and specificity of the diagnosis of ICH. The segmentation results are obtained after data pre-processing and Sym-TransNet. The DICE coefficient is used to evaluate the similarity between the segmentation results and the segmentation gold standard. Furthermore, some recent deep learning methods are reproduced to compare with Sym-TransNet, and statistical analysis is performed to prove the statistical significance of the proposed method. Ablation experiments are conducted to prove that each component in Sym-TransNet could effectively improve the DICE coefficient of ICH lesions. Results: For the segmentation of ICH lesions, the DICE coefficient of Sym-TransNet is 0.716 ± 0.031 in the test set which contains 200 CT images of ICH. The DICE coefficients of five subtypes of ICH, including intraparenchymal hemorrhage (IPH), intraventricular hemorrhage (IVH), extradural hemorrhage (EDH), subdural hemorrhage (SDH), and subarachnoid hemorrhage (SAH), are 0.784 ± 0.039, 0.680 ± 0.049, 0.359 ± 0.186, 0.534 ± 0.455, and 0.337 ± 0.044, respectively. Statistical results show that the proposed Sym-TransNet can significantly improve the DICE coefficient of ICH lesions in most cases. In addition, the accuracy, sensitivity, and specificity of Sym-TransNet in the diagnosis of ICH in 400 CT images are 91.25%, 98.50%, and 84.00%, respectively. Conclusion: Compared with recent mainstream deep learning methods, the proposed Sym-TransNet can segment and identify different types of lesions from CT images of ICH patients more effectively. Moreover, the Sym-TransNet can diagnose ICH more stably and efficiently, which has clinical application prospects.

5.
Front Mol Biosci ; 9: 874475, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463963

RESUMO

As a major infectious disease, tuberculosis (TB) still poses a threat to people's health in China. As a triage test for TB, reading chest radiography with traditional approach ends up with high inter-radiologist and intra-radiologist variability, moderate specificity and a waste of time and medical resources. Thus, this study established a deep convolutional neural network (DCNN) based artificial intelligence (AI) algorithm, aiming at diagnosing TB on posteroanterior chest X-ray photographs in an effective and accurate way. Altogether, 5,000 patients with TB and 4,628 patients without TB were included in the study, totaling to 9,628 chest X-ray photographs analyzed. Splitting the radiographs into a training set (80.4%) and a testing set (19.6%), three different DCNN algorithms, including ResNet, VGG, and AlexNet, were trained to classify the chest radiographs as images of pulmonary TB or without TB. Both the diagnostic accuracy and the area under the receiver operating characteristic curve were used to evaluate the performance of the three AI diagnosis models. Reaching an accuracy of 96.73% and marking the precise TB regions on the radiographs, ResNet algorithm-based AI outperformed the rest models and showed excellent diagnostic ability in different clinical subgroups in the stratification analysis. In summary, the ResNet algorithm-based AI diagnosis system provided accurate TB diagnosis, which could have broad prospects in clinical application for TB diagnosis, especially in poor regions with high TB incidence.

6.
J Xray Sci Technol ; 29(5): 785-796, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34219703

RESUMO

Tuberculosis (TB) is a major health issue with high mortality rates worldwide. Recently, tremendous researches of artificial intelligence (AI) have been conducted targeting at TB to reduce the diagnostic burden. However, most researches are conducted in the developed urban areas. The feasibility of applying AI in low-resource settings remains unexplored. In this study, we apply an automated detection (AI) system to screen a large population in an underdeveloped area and evaluate feasibility and contribution of applying AI to help local radiologists detect and diagnose TB using chest X-ray (CXR) images. First, we divide image data into one training dataset including 2627 TB-positive cases and 7375 TB-negative cases and one testing dataset containing 276 TB-positive cases and 619 TB-negative cases, respectively. Next, in building AI system, the experiment includes image labeling and preprocessing, model training and testing. A segmentation model named TB-UNet is also built to detect diseased regions, which uses ResNeXt as the encoder of U-Net. We use AI-generated confidence score to predict the likelihood of each testing case being TB-positive. Then, we conduct two experiments to compare results between the AI system and radiologists with and without AI assistance. Study results show that AI system yields TB detection accuracy of 85%, which is much higher than detection accuracy of radiologists (62%) without AI assistance. In addition, with AI assistance, the TB diagnostic sensitivity of local radiologists is improved by 11.8%. Therefore, this study demonstrates that AI has great potential to help detection, prevention, and control of TB in low-resource settings, particularly in areas with more scant doctors and higher rates of the infected population.


Assuntos
Aprendizado Profundo , Tuberculose , Inteligência Artificial , Humanos , Radiografia , Radiologistas , Tuberculose/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA